Uncategorized

Nursing Interventions Prevent Dry Eye Critically Ill Patient Article Discussion Question: Application and implications for practice come from the interpre

Nursing Interventions Prevent Dry Eye Critically Ill Patient Article Discussion Question:

Application and implications for practice come from the interpretation of meaning from research findings. Communicating and using research evidence is an expectation of a BSN graduate.

Select and describe one of the conclusions from the required article from the Week 6 assignment that you found interesting and applicable to practice. Describe how you would apply the evidence to improve nursing practice. Explain your answer.
Discuss ways you would disseminate research-based evidence; how would you share with your peers? Include your thoughts on why it is important for you to be involved in communicating and applying nursing research evidence.

Notes

1. Week 6 article attached.

1. Minimum one scholarly source including the text book

Houser, J. (2018). Nursing research: Reading, using, and creating evidence (4 th ed.). Sudbury, MA: Jones and Bartlett. E vidence-Based Practice in Critical Care
E
FFECTIVENESS OF
NURSING INTERVENTIONS
TO PREVENT DRY EYE IN
CRITICALLY ILL PATIENTS
By Diego Dias de Araujo, PhD, MSN, RN, Daniel Vinicius Alves Silva, Carolina
Amaral Oliveira Rodrigues, Patricia Oliveira Silva, Tamara Goncalves Rezende
Macieira, BSN, and Tania Couto Machado Chianca, PhD, MSN, RN
©2019 American Association of Critical-Care Nurses
doi:https://doi.org/10.4037/ajcc2019360
www.ajcconline.org
Background Critically ill patients are susceptible to the
development of dry eye. Few studies have been conducted
on how to best prevent and treat this condition.
Objective To compare the effectiveness of 2 nursing interventions in preventing dry eye in adult intensive care unit
patients: liquid artificial tears (Lacribell; Latinofarma)
and artificial tears gel (Vidisic Gel; Bausch and Lomb).
Methods In this randomized controlled trial, 140 participants were randomly assigned to 1 of 2 treatment groups:
a liquid artificial tears group (n = 70) and an artificial tears
gel group (n = 70). The study inclusion criteria were as
follows: admission to the intensive care unit, age of 18
years or older, no diagnosis of dry eye at admission,
receipt of mechanical ventilation, blink rate of less than
5 times per minute, and a score of 7 or less on the
Glasgow Coma Scale. On 5 consecutive days, a single
researcher who was unaware of the treatment assignment assessed the participants’ eyes using the fluorescein eye stain test and the Schirmer test for dry eye.
Results Dry eye developed in 21% of participants who
received liquid artificial tears versus 9% of participants
who received artificial tears gel (P = .04).
Conclusions In this study, artificial tears gel was superior
to liquid artificial tears in preventing the development of
dry eye. These results may help nurses deliver evidencebased eye care aimed at reducing the risk of dry eye in
critically ill patients. (American Journal of Critical Care.
2019;28:299-306)
AJCC AMERICAN JOURNAL OF CRITICAL CARE, July 2019, Volume 28, No. 4
299
I
ntensive care unit (ICU) patients often have conditions leading to compromised physiological mechanisms of eye protection. These conditions include being unconscious or
comatose; taking several medications such as diuretics, sedatives, and `-blockers; receiving mechanical ventilation; and being exposed to air conditioning and low air humidity.1-4 Consequently, these patients are susceptible to the development of dry eye and
other ocular surface disorders.4-7
Clinical guidelines that have been developed for
eye care in the ICU refer to a variety of interventions
designed to reduce the prevalence and incidence of
ocular surface alterations in critically ill patients,
such as corneal ulcerations and keratitis. These interventions include ointments, liquid eyewashes, gels,
moist gauze, paraffin gauze, hydrogel, and polyethylene film.6-8
Dry eye has been defined as a multifactorial
change in tears and the ocular surface that results
in discomfort, visual disturbances, and tear film instability, with potential damage of
the ocular surface.9 In nursing, the diagnosis of “risk for
dry eye” is applied to patients
who are “vulnerable to eye
discomfort or damage to the
cornea and conjunctiva due
to reduced quantity or quality of tears to moisten
the eye, which may compromise health.”10(p387)
A recent study in Brazil showed that dry eye is a
common problem in patients admitted to ICUs, with
an incidence of 53%.5 Intensive care unit patients have
a higher probability of dry eye developing than do
other hospitalized patients because of a variety of
internal and external risk factors.1-3,5 Dry eye can be
chronic and progressive, imposing limitations on
patients’ ability to perform activities of daily living
and negatively affecting their quality of life. Therefore, a preventive approach that includes appropriate eye care is crucial to minimize the risk of dry
eye and avert possible complications.
Fifty-three percent of
adult patients admitted
to intensive care units
have dry eye.
About the Authors
Diego Dias de Araujo is assistant professor and Daniel
Vinicius Alves Silva, Carolina Amaral Oliveira Rodrigues,
and Patricia Oliveira Silva are undergraduate students,
Department of Nursing, Universidade Estadual de Montes
Claros, Montes Claros, Brazil. Tamara Goncalves Rezende
Macieira is a PhD candidate, College of Nursing, University of Florida, Gainesville, Florida. Tania Couto Machado
Chianca is professor, School of Nursing, Universidade
Federal de Minas Gerais, Belo Horizonte, Brazil.
Corresponding author: Diego Dias de Araujo, PhD, MSN, RN,
Av Ruy Braga, Predio 6 (CCBS), Montes Claros, Minas
Gerais, Brazil 39401-089 (email: diego.dias1508@gmail.com).
300
Because nurses are the frontline health care providers in hospitals, they have an important role to
play in reducing the risk of dry eye in critically ill
patients through effective nursing interventions. A
study reported in 2011 compared the effectiveness
of 2 nursing interventions—polyethylene film and
carbomer drops—in the prevention of dry eye among
18 adult ICU patients.2 The polyethylene film was
found to prevent dry eye in all of the cases, while
the carbomer drops were effective in only 17% of
the patients (P < .001).2 However, large studies of polyethylene film for the prevention of dry eye have not yet been conducted. Moreover, more research is needed on evidence-based nursing interventions that result in less discomfort for patients and can be more easily applied by nurses than polyethylene film. Therefore, this study was conducted to compare the effectiveness of 2 nursing interventions in preventing dry eye in adult patients admitted to an ICU: liquid artificial tears (Lacribell; Latinofarma) and artificial tears gel (Vidisic Gel; Bausch and Lomb). Methods This study was registered in ClinicalTrials.gov (Identifier: NCT02767258) and in the Brazilian Clinical Trials Registry (ReBec) (Identifier: RBR5r8syp). Ethical approval was obtained from the institutional review board of the Universidade Federal de Minas Gerais before the study was begun. We followed the Consolidated Standards of Reporting Trials (CONSORT) guidelines for nonpharmacological interventions.11 Written informed consent was obtained from each patient’s family member or next of kin before recruitment. Design This was a double-blind (patients, outcome assessor) randomized controlled trial with 2 parallel groups. The data reported here were collected between January 14, 2016, and March 14, 2017, in a 10-bed ICU at a large tertiary care, nonprofit hospital in Brazil. Patients recruited for the study met the following inclusion criteria: age of 18 years or older, no diagnosis of dry eye at ICU admission, receipt of mechanical ventilation, blink rate of less than 5 AJCC AMERICAN JOURNAL OF CRITICAL CARE, July 2019, Volume 28, No. 4 www.ajcconline.org Inclusion Assessed for eligibility (N = 546) Excluded (n = 406) • Admitted with the diagnosis of brain death (n = 33) • Less than 18 years of age (n = 20) • Diagnosed with dry eye at admission (n = 23) • Family members did not give consent to patient’s participation in the study (n = 50) • Length of stay less than 48 hours (n = 85) • Patient not receiving mechanical ventilation; blinking 5 or more times per minute; score higher than 7 on Glasgow Coma Scale (n = 95) • Failure to locate patient’s next of kin in time to get consent for patient’s participation and sign the informed consent form (n = 100) Randomized (n = 140) Allocation Intervention group, artificial tears gel (n = 70) Intervention group, liquid artificial tears (n = 70) Evaluation Loss to follow-up (n = 2) • Death (n = 1) • Failure to check if intervention was performed at the correct time (n = 1) Loss to follow-up (n = 2) • Death (n = 1) • Patient discharged before completing 5 days of evaluation (n = 1) Analysis Included in the analysis (n = 70) Included in the analysis (n = 70) Figure Flowchart illustrating the 4 phases of the study, following the Consolidated Standards of Reporting Trials (CONSORT) recommendations for nonpharmacological interventions. times per minute, and a Glasgow Coma Scale score of 7 or lower.2 Patients were excluded if they had an ICU stay of less than 48 hours or were admitted to the unit with a diagnosis of brain death. Failure to document the delivery of nursing interventions (liquid artificial tears or artificial tears gel) at the correct time resulted in the participant’s exclusion from the study and discontinuation of treatment. Sample Size and Randomization We performed a pilot study involving 30 patients between November and December 2015, with 10 patients allocated to each of 3 groups (liquid artificial tears, artificial tears gel, and 0.9% sodium chloride solution), to estimate sample size. In the pilot study, 40% of the patients treated with liquid artificial tears had dry eye develop, compared with 10% of those treated with artificial tears gel (P = .01). www.ajcconline.org Power analysis using the proportion of unfavorable results in the pilot study (40%), a significance level of .05, power of 80%, and a relative risk (RR) of 0.5 in favor of artificial tears gel (or RR reduction of 20%) resulted in an estimated sample size of 134 patients: 67 patients for each of the 2 intervention groups. If any participants were lost during the study, more would be recruited until at least 67 patients were allocated to each group. The initial study population consisted of 546 medical or surgical patients who had been admitted to the ICU of the target hospital. Of the 546 patients assessed for eligibility, 406 were excluded according to the inclusion and exclusion criteria. The resulting final sample consisted of 140 patients, 70 in each group (see Figure). Despite allocation to a third group in the pilot study, we decided not to treat patients with 0.9% AJCC AMERICAN JOURNAL OF CRITICAL CARE, July 2019, Volume 28, No. 4 301 sodium chloride solution in this study. The results of the pilot study showed that 60% of patients allocated to this intervention group had dry eye develop. The findings of previous studies support our decision not to use 0.9% sodium chloride solution as a study intervention.1,12 A statistician performed block randomization of patients using the computer software R-3.2.3. The randomized list was subdivided every 10 patients into 2 groups in a 1:1 ratio. The list was sent directly to the research coordinator of the study (T.C.M.C.) and to 2 undergraduate research assistants (D.V.A.S., C.A.O.R.) who were responsible for the allocation of the patients. Two lubricant eye drops were used as interventions: liquid artificial tears (Lacribell) and artificial tears gel (Visidic Gel). Interventions Two types of lubricating eye drops—liquid artificial tears (Lacribell) and artificial tears gel (Vidisic Gel)—were used as the study interventions. After a patient was recruited for the study, the ICU nurses were notified through an information center which of the 2 interventions would be used for that patient. The intervention was prepared by a nurse and stored in a brown envelope. The ICU’s nursing technicians delivered the intervention twice a day (at 8:00 AM and 8:00 PM) for 5 consecutive days. The nursing technicians followed a protocol for cleaning the patient’s eyes with 0.9% sodium chloride before administering 2 drops of the predetermined intervention to each eye. Before the study was begun, we trained the nursing team in the study protocols and procedures. The training consisted of an explanation of the study problem; an overview of the study methods; description of the inclusion and exclusion criteria; instruction on when to discontinue the interventions; explanation of informed consent, its importance, and how to obtain it; and the techniques for application of each intervention. To increase the chances of recruiting participants, nurses were given the responsibility for obtaining informed consent because of the study personnel’s inability to be present on the unit for 24 consecutive hours. The ocular assessment consisted of the Schirmer test and the fluorescein test. 302 Outcome The study outcome was the development of dry eye. Potentially confounding variables included in the data analysis were age, sex, unit of origin, Nursing Activities Score, Acute Physiology and Chronic Health Evaluation II score; patient type (medical condition only or postsurgical), death, length of stay, referral unit, medical diagnosis at admission, sedation, Ramsay Sedation Scale score, Glasgow Coma Scale score, intubation, tracheostomy, mechanical ventilation, days of mechanical ventilation, mode of mechanical ventilation, fraction of inspired oxygen, positive endexpiratory pressure, other ventilatory assistance device, blink rate per minute, ocular surface exposure, edema, severity of corneal ulcer, medications, and positioning (degree of head elevation). Data Collection On 5 consecutive days, one of the researchers (D.D.A.) collected data and performed ocular assessment for each participant included in the sample. This 5-day period was established on the basis of the reported mean time of 3.5 days for development of dry eye in critically ill patients.5 Before ocular assessment, the nursing technicians cleaned the patient’s eyes with 0.9% sodium chloride solution to remove any traces of the intervention substances, ensuring that the researcher remained unaware of the treatment allocation of each patient. The ocular assessment consisted of the Schirmer test and the fluorescein eye stain test. The Schirmer test was used to analyze tear volume. This test involved placing a strip of Whatman filter paper grade 41 or 50 measuring 5 mm wide and 35 mm long with the tip folded (about 5 mm) in the bottom of the lower conjunctival sac in the temporal region (outer corner of the lower eyelid). After 5 minutes, the strip was removed and the moistened part was measured and the result documented.13 The fluorescein eye stain test was used to evaluate the cornea for possible abnormalities. A drop of fluorescein was placed in each of the patient’s eyes; after 1 to 2 minutes, under low-light conditions, the cornea was examined using an ophthalmoscope with a cobalt blue light filter and a magnifying glass.13 Data Analysis Two of the researchers (C.A.O.R., P.O.S.) independently entered the data into the Epi Info software program, version 3.5.1. The data entered were checked for consistency and then extracted and analyzed in the R-3.2.3 software. Frequency, central tendency (average), and standard deviation were measured. Categorical variables in the 2 intervention AJCC AMERICAN JOURNAL OF CRITICAL CARE, July 2019, Volume 28, No. 4 www.ajcconline.org Table 1 Risk scores, demographic variables, and baseline comorbidities by group Variable Continuous Age, y APACHE II score Score on Ramsay Sedation Scale Score on Glasgow Coma Scale Schirmer test result, mm Liquid artificial tears Artificial tears gel Pa 52.8 (19.9) (n = 70) 21.5 (7.6) (n = 70) 5.9 (0.3) (n = 63) 0 (0) (n = 7) 12.9 (3.7) (n = 70) .98 .94 .24 .49 .19 Mean (SD) 52.8 (19.8) (n = 70) 22.2 (8.9) (n = 70) 5.9 (0.3) (n = 59) 0.1 (0.3) (n = 11) 13.6 (3.9) (n = 70) No. (%) of 70 patients in each group Categorical Female sex Heart disease Vascular disease Neurologic disease Pneumonia Trauma Gastric disease Metabolic disease Neoplasm Patient sedated 30 0 12 5 3 22 3 2 1 60 (43) (0) (17) (7) (4) (31) (4) (3) (1) (86) 24 (34) 4 (6) 13 (19) 9 (13) 4 (6) 16 (23) 9 (13) 2 (3) 5 (7) 63 (90) .38 .12 > .99
.40
> .99
.34
.13
> .99
.21
.61
Abbreviation: APACHE II, Acute Physiology and Chronic Health Evaluation II.
a
Mann-Whitney test was used to compare continuous variables; Fisher exact test was used to compare categorical variables. For both tests, P ) .05 was
considered significant.
groups were compared using the Fisher exact test.
Continuous variables were compared using the
Mann-Whitney test. The assumption that the distribution of the continuous variables was normal was
tested using the Shapiro-Wilk test. The incidence of
dry eye and the effect of the nursing interventions
were analyzed using the Fisher exact test. The results
were presented with a 95% CI. Poisson regression was
used to present the results, with the model adjusted
for potential confounders (the risk factors of age,
sex, and ocular surface exposure). Statistical significance was set at P ≤ .05.
Results
Participants
In total, 140 patients were included and randomized in the study. No statistically significant
differences were found between the 2 groups at
baseline (P ≤ .05; Tables 1 and 2), confirming that
randomization was sufficient to match the groups.
The fluorescein eye test indicated the presence of
corneal ulceration in 1 participant treated with liquid artificial tears and 2 participants treated with
artificial tears gel (Table 2; P > .99).
Development of Dry Eye
Table 3 shows the incidence of the primary outcome (dry eye) during the 5-day evaluation period.
On the fifth day of hospitalization, dry eye was present in 21% of patients (incidence rate of 4.28 per
100 patient-days) in the liquid artificial tears group
and 9% of patients (incidence rate of 1.72 per 100
patient-days) in the artificial tears gel group.
www.ajcconline.org
The RR estimated for the effect of the intervention was 0.400 (95% CI, 0.166-0.964; P = .04; Table
4), indicating that the chance of dry eye developing
was twice as high
in the liquid artificial tears group
as in the artificial
tears gel group.
The effect of the
artificial tears gel
intervention
remained statistically significant
(P = .04) after
model adjustment for the risk factors (age, sex, and ocular surface
exposure) identified in the sample (Table 4).
The nursing team should identify risk factors for dry eye as
soon as a patient is admitted
to the ICU and then implement
the needed interventions,
such as artificial tears gel.
Discussion
Most studies conducted to date on eye care practices for hospitalized patients focus on the prevention
of corneal ulcers and associated risk factors. Little
attention has been given to the problem of dry eye,
especially among patients admitted to ICUs. Yet
dry eye, if not adequately treated, can lead to corneal ulcers.9,13
Our results showed that artificial tears gel is more
effective than liquid artificial tears (RR = 0.400; 95%
CI, 0.166-0.964; P = .04) in preventing dry eye in
adult ICU patients. We found no other published
studies comparing these 2 interventions. Ezra et al14
compared artificial tears gel and hydrogel in the prevention of exposure keratopathy among critically ill
AJCC AMERICAN JOURNAL OF CRITICAL CARE, July 2019, Volume 28, No. 4
303
Table 2
Characteristics of hospitalization, baseline
lesions, and use of medications by group
No. (%) of 70 patients
in each group
Liquid
artificial
tears
Characteristic
Unit of origin
Emergency unit
Emergency department
Medical unit
Other institution
Surgical unit
10
1
17
3
39
Patient type, surgical
42 (60)
Pa
.25
Ocular surface exposure
(14)
(1)
(24)
(4)
(56)
19
3
14
1
33
(27)
(4)
(20)
(1)
(47)
33 (47)
.18
7 (10)
.76
5 (7)
Type of lesion (corneal ulcer)
1 (1)
2 (3)
Analgesic
42 (60)
45 (64)
.73
Antibiotic
48 (69)
51 (73)
.71
Anticoagulant
34 (49)
25 (36)
.17
Antiepileptic
14 (20)
21 (30)
4 (6)
4 (6)
> .99
Antiemetic
18 (26)
17 (24)
> .99
Antihypertensive
14 (20)
10 (14)
.50
Antiprotozoal
1 (1)
3 (4)
.62
Bronchodilator
5 (7)
7 (10)
.76
Corticosteroid
10 (14)
7 (10)
.61
Diuretic
26 (37)
29 (41)
.73
Vasodilator
50 (71)
53 (76)
.70
Hypnotics
58 (83)
63 (90)
.32
Hypolipid
8 (11)
3 (4)
.21
Hormone
1 (1)
1 (1)
> .99
Gastric bypass inhibitor
57 (81)
59 (84)
.82
Insulin
30 (43)

Purchase answer to see full
attachment